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ON THE MOTION OF A SOLID WITH AN IDEAL NAN-~~TA~NIN~ ~~NST~AINT* 

A.P. f4AFKEYEV 

The extension of method /l/ of canonical formalism to Systems with ideal 
one-way constraints are applied to the analysis of the motion of a solid 
when it collides with a stationary horizontal absolutely smooth plane- The 

surface of the body is assumed to be close to a sphere. The Kolmugorov 
theorem on the conservation of motion when there is a small change in the 
Hamiltonian functions /2, 3/ is used for a qualitative inVeStigation of 

the motion of the body. The existence of periodic motions of an homogeneous 
ellipsoid of revolution is proved by PoincarE's method /4/ and their 
stability is investigated. 

1, Let a Solid with a convex surface with no points and ribs move in a gravitational 
fj.eld above a stationary horizontal surface, which in the course of its motion may collide with 

the surface. The collision is assumed to be perfectly elastic , and the plane absolutelysmooth. 
We will relate the motion to a fixed coordinate system 01~s having its origin at some 

point of the surface; the Oz axis is directed vertically upward. The system of coordinates 

Q&J5 is rigidly attached to the solid along its principal central axes of inertia. The 
Euler angles 'If, 6, v determine the position of the solid relative to the system of coordinates 
that are conventionally introduced, and the unit vector y of the 0; axis in the system G&JE. 
is Specified by the components yI, y-2* +;s: 

17~ = sin 0 sin q. y? = sin 8 ces (f, y3 = Cos 0 

Let P be a point of the surface of the solid closest to the horizontal plane Osllr 
whose coordinates z,n, 5 in the system G&f are functions of the angles 8. q defined by the 
form of the equations f(e,q, <) =Othat defines the form of surface of the solid. 

If 5, lJ* z are the coordinates of the centre of mass G of the solid in the system Oxys, 
m is the mass of the body, g is the acceleration due to gravity, A,B, Care the priucipal 
central moments of inertia of the solid, p, 4.7 are the projections of its angular velocity 
on the axes GE. Gq. G;, the kinetic and potential energy of the solid are given by the 
eq?lations 

T zz ligltl (,r‘" -+ ?jp + z'?) -L Id',, (dp? +. fig? I Cr'). n = pnr: 

p z= li'=c, i_ 8' CDS 'F. q := 'l.';l - 8' sin ff, r =: q* c()s 6 + q' 

The non-retaining constraint imposed or, the solid is given by the inequality z-2 d, where 

d = -(ET, f 1jy2 -2 ;&) is the distance of the centre of mass from the horizontal plaae that 
passes through the point P. This inequality indicates that the point P is not below the plane 
O.C!/. 

Since the two external fcrrces acting on the solid, the gravity force and the force 
generated on impact, are vertical, the projection of the centre of mass on the 0.r~ plane 
moves uniformly and rectilinearly; without loss of generality we will assume that it .iS 
stationary f.r' = g,' = 01, SO that the centre of mass moves along the given vertical line, 

If the coordinate z is replaced by the qcantity 

I]:!? -_ ;ys. and we put 
qO, using the formula 90 = z + ~13~ + 

where the prime denotes differentiation with respect to (3 or 
be expressed in the form 

q, tie Lagrange function can 
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a o. = m, a,, = a,, = -m (Xps q1 - 5 sin q,), ao2 = a,, = -mX2 sin q, 

a 03 = aa = 0, aI1 = A co? q2 + B sin’ q2 + m (~~~0s q1 - 
t sin q,)* 

a12 = a*, = rnX2 (xlcos q1 - : sin qJ sin ql. c,~ = aa = 
(A - B) sin q1 sin q2 cos q?, ag2 = C -+ u/x2* sin2 q1 

a ?3 = aQz = C cos ql, oz3 = (A sin* q2 + B cos2 ql) sin? q, + 
c cos* q1 

q1 = 8, 92 = ‘F, q3 = 21: 

The constraint is given by the inequality q,,> 0. 

2. To write the equation of motion in Hamiltonian form it is first necessary to make the 
non-degenerate change of variables 

Qo = Qw 4j = fj (00, QI. Q2r 43) (i = I, 27 3, (2.1) 
selecting the functions 
products QiQj’ (j = 1. 2, 
differential equations 

fj so that in the new variables the Lagrange function does not contain 
3). The functions fj, according to /l/ must satisfy the system of 

dfl dJz df3 
alI - + a- - +- a3, - = - aoj 

LV” -’ pQo 6 0,) 
(j= 1,2,3) 

Here the quantities q1,q2 and qa in the coefficients azj must be replaced by the unknown 
functions /,,I* and f3 respectively. The quantity Q. in (2.2) plays the part of an independent 
variable. System (2.2) must be solved for the initial conditions 

!j lo.=0 = Q, (j = 1, 2, 3) (2.3) 

The new variables Q, appear in functions ,fl. jzl j3 as parameters. We will denote the dynamic 
system, with Lagrangian function expressed in the new variables QO, Qj (j = 1. 2, 3), by M. 

Replacing Q. by 1 Q, lin the Lagrangian function, we change to theancilliary system Al* 
with the Lagrangian function L*. The trajectories Qo(t),Qj(t) and Qo* (t). Qj* (1) of systems M 
and AI* satisfy the relations 

Qo (1) = I Qo* (1) I, Qj (t) = Qj* (t) (i = 1. 1, 3) 
The ancilliary-system equations may be written inthe usual way in the Hamiltonian form 

dQi a~ dl’, 
aH -iF=q df=-- OQ, 

(i = 0, 1,2,3) 

where we must assume 

3. The explicit form of the change of variables (2.1) cannot generally be obtained, but 
if the coefficientsa,j(j = 1, 2. 3) are small, the solution of the Cauchy problem (2.2), (2.3) can 
be found in the form of series in the small parameter. In this problem the coefficients ao3 

is equal to zero, and the coefficients 6 and a ao2 are small if and only if the surface of 
the solid is close to a sphere whose centre is at the centre of mass of the solid. 

To prove this we assume that the equationf(t,q, 5) = Oof the surface of the solid is such 
that 7 = grad/i 1 grad f /. Then 

df --_ a6 - l’i I grad I I, + = :(2 I grad Il. 
O! 

-7 = :‘s I grad f I 
03 

and for the quantities n,,,n,, we obtain theequations 

The equation oo2= 0 implies that the solid surface must be a surface of revolution f (P, 

5) = 0, where p = (t*+ 12~'~. Substituting the function f into the equation += 0, we obtain 

The quantity ai/+ cannot be identically zero, since the equation f=O would then be 
simply an equation in 5. Hence from (3.1) it follows that the expression in brackets equals 
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zero, i.e. f is a function of p* + 5** This means that the coefficients a01 and "08 are 

identically Zero only if the surface of the solid is a sphere whose centre is at the centre 

of mass G of the solid. 
In what follows we will assume the surface of the solid to be close to a sphere of radius 

R specifedby the equation 

$= l?* - (EZ + $ -!- 1;2) + Pfl (k, '1, 5, p) = 0 (O< r< 1) 

Function fi is assumed to be an analytic function of its variables. The coefficients 

GOi and sop are quantities of the order of I(. 

4. The solid is a sphere, when p = 0. The centre of mass of the sphere coincides with 

its geometric centre; the sphere is generally homogeneous, and has an arbitrary central 

ellipsoid of inertia. The Lagrangian function .L,, is the sum of two terms 

L, = &et + &(2) (4.1) 

where .L&~i.s the Lagrange function defining the Euler-Poinsot motion of a solid about its 
centre of mass; it is obtained fromthe function (l.l), if in the latter we assume Ill = 0, 

q*’ = 0. The function Lo(*) defines the motion of the centre of mass of the sphere (90 = 

2 - R) 
L&2 = “‘*nlq*‘? - n,gqo* 90 2 0 (4.2) 

The subsidiary system Al,* with the Lagrange function &,* has the Hamiltonian function 
11, = Huf" -+ N@), where H&l) is the Hamiltonian of the Euler-Poinsot problem, and 

fJ,e) = po2i(2m) $ mg [ p. f (4.3) 

The Euler-Poinsot motion is well known. We shall consider in detail the motion of the 
centre of mass in the system hl ,*which is definedbythe Hamiltonian (4.3). 

Fig.1 Fig. 2 

Curves of the potential energy l'I,* of the subsidiary system I(¶,* and its trajectory in 
the phase plane po,pO are shown in Fig. 1. Each phase trajectory consists of parabolic arcs 
symmetrical about the axis q. = 0. 

equal to 4 (Zh!g)‘*, 
In the system X0* all motions are periodic of period z 

where h is the maximum height the sphere jumps above the plane. 
T is equal to the time interval between the k-th and the (!s L 

The quantity 

with the plane. 
2)-th collisions of the sphere 

The dependence of Q,, on time is shown in Fig. 2 for the ,?I,* system on the assumption that 
Bo is zero at t=o. The curve of the function q,,(t) consists of pieces of parabolas 

pa(t) = f (ZgQX'* f - gP.‘l. 0 <t < rr2 
t - (2ghf“s (i - 7.‘2) +- g [t - T,'2)?'2, T/i? < t < T 

The actual motion of the centre of mass, 
a period of ~2 

described bytheLagrangian function (4.21, has 

with the plane. 
equal to the time interval between two consecutive collisions of the sphere 
The curve 

in Fig. 
q,,(t) of the actual motion is obtained from the curve represented 

2 by a mirror reflection of its part lying below the time axis, relative to that axis. 
The phase pattern of the actual motion is obtained from the phase pattern in Fig. 1, by taking 
in the latter only the parts of the trajectory on which qa > 0, 
closed curves by corresponding segments of the 

and supplementing them to 

the phase trajectory abed 
go=0 axis. For instance, to obtain from 

of the subsidiary system the phase trajectory of the actual system 
it is necessary to complement the arc abc by the segment ca. 
to point a occurs jumpwise, 

The transfer from point c 
which corresponds to the collision of the sphere with the plane. 

To continue the analysis it is necessary to reduce function (4.3) to action variables 
- the angle W. For this we make the following 
the variables qo, p. + 1, 14’: 

2s periodic in W canonical replacement of 
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411n-*W (n - IV), O<W<x 
9= - 4kI-2 (W - n) (2x - W), n < w < 2n 

2mn-’ (Igl1)“2 (n ‘2 -. W), 
P= 

I- 

0 -< II’ .< n 

2mn-1(2ghp (3X,‘? - W), n<W<;2x 

The Hamiltonian (4.3) in variables I, W takes the form 

(‘1. ;) 

Ho(‘) = (” ‘32mX2g”)‘/aI’i, (4.5) 

The height of the jump is related to the quantity I by the equation 

I=' 31/1X-1 (2g)"*h':~ ( 4 i; ) 

The frequency ('1 of the periodic motion of the centre of mass in the subsidiary system 

TbJ”* is calculated using the formula 

Hence, for !t = (I the motion of the subsidiary system is the motion of the Euler-Poinsct 

solid relative to the centre of the mass and the periodic motion of the latter with frequency 

(0 given by formula (4.7). The actual motion differs from that motion only in the fact that 
in it 30,'-0, and the periodic motion o f the centre of mass occurs along the vertical line 
with a frequency 21,J. 

5. NOW suppose 5' # 0. We denote by I,. I,. I,. Ii',. l/lTi. II', the action-angle variables 

in the Euler-Poinsot problem /5, 6/. Here la is the projection of the angular momentum of 
the solid relativetothe centre of mass on the vertical line, and I? is the modulus of the 

angular momentum. The angle variable II', is cyclic in this problem, hence In is the first 

integral which we shall consider as one of parameters. The Hamiltonian can be written in 
the form 

H = H, (I,. J2. J) $ pH, (J,. I?, I. Ii.,. ~1’~. W) + . (5.1) 
H, = Ha’” (II. J2) - Ho’” (I) 

where Ho"' is the Hamiltonian of the Euler-Poinsot motion expressed in terms of the action-angle 

variables, and the function Jf,,iz)(f) is defined by formula (4.5). The function H-H, is 

analytic for all variables and 2~ periodic in It‘,, 11'? and Ti', * The dots, here and sub- 

sequently denote terms cf second and higher orders. 

Let the motion of the solid relative to the centre of mass be conditionally periodic. 

Its frequencies ok are equal to the derivatives 8Ho”l al, (k = 1, 2), computed for initial 

values of the quantities J,. J,. 
For the Hessian r of the function H, we have the expression 

The first factor in the above formula for r is non-zero, as shown in /7/. 
-\ Since (4.,, 

implies that 
bo 40'+0 
bl= - rnzl'&? (5.3) 

we have rzo. Hence from the Kolmogorov's theorem /2, 3/ it follows that for any s >. il 

there exists a p0 such that for 0 < p< II, for all t. - 00 <t< 00 motion in the system with 

Hamiltonian (5.1) conforms to the inequalities 1 I, (t) - I, (0) 1 < E (k = 1. ?), j J (1) - J (0) / <e 
for the majority of initial values Jk(0),I(O)‘ In the sense of Lebesgue measure. 

This conclusion means that (for the majority of initial conditions) in an infinite time 

interval, the motion of the solid of a form fairly close to a sphere is such that its angular 
momentum and the angle between the angular momentum vector and the vertical differ Only little 

from their initial values; the jump height h above the plane differs little from its value 

in the unperturbed motion (p=O), and, consequently, the time intervals between two cons- 

ecutive collisions between solid and plane vary only slightly. 

6. Let the solid be dynamically and geometrically symmetrical with axis of Symmetry cc. 

The angle of eigenrotation (I is a cyclic coordinate. The projection L = Cr of the Vector 

of angular momentum on the G, axis is the first integral. Having fixed L we relate it tc 
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the parameters of the problem. Investigation of the motionofasolidreducestoaconsideration 

of a system with two degrees of freedom whose Hamiltonian in action-angle variables has 

the form 

where H- Ho is an analytic function of its variables, 2n periodic in NJ, and W. 
The motion of the solid relative to its centre of mass becomes a regular pxecession when 

).& = 0. In special cases the precession degenerates into a steady rotation of the solid 
about its principal central axes of inertia. 

The conclusions in Sect. 5 on the conservation of motion for small p are valid in this 
case. But, since in this case, the problem reduces to an investigation of systems with two 

degrees of freedom, not as in Sect. 5 with three degrees, it is possiblehere todrawconclusions 

on the conservation of motions for all initial conditions, and not for the majority of 

cases as in the latter. To check this it is sufficient to verify condition D ~$0 /3/ of 

the isoenergetic non-degeneration function Ho in (6.1). We have 

aeH,, &H,, dH#, 
ai,% al,dl- d/p 

d'HJ &.gL- dH@ 
$312 

dH,” dfi,, 

dl _~-(~)'$i_ 

din dl 1’ 

Taking into accoung relations (4.61, (4.7), and (5.2), we obtain 

The quantity D vanishes if and only if nzgh = f~"2.4. Hence DsO. Because of this the 
conclusions about the motions of a solid are valid here for all initial conditions. 

7. Let us consider the question of the existence and stability of periodic motions of 
i. solid that is nearly a sphere. To be specific we shall consider the solid to be a homogeneous 
ellipsoid, whose surface equation has the form 1 - (E','a' + ?)',b? + ;' c') = U. The coordinates 

E, 11, 5 of point P are related to the Euler angles 8: cp by the relations 

bQ= = -A sin 8 sin CJY. 
-Los8 

c’n%l = -A sin 6 cos y, a2b2z = 

d = (b4$$2 _t &‘$ + &,‘“)‘: 

The following equations hold: 

3 ~rca.sEl--;sinB=-- n't4_! sin tr cos8(az sin" cp + b' cesZ CF - r*) 

XlsinO + ;cosB= - &I( a?sin'cp L b2 c&y) sinct) -+- c?cos?O] 

A = nz (b2 -j- c’) 5: B = 1,) (c* + a:) J, C I 1,~ ($ -.+. b?),5 

Sc~pose thesemi-axesof the ellipsoid are close to R, differing from it by quantities 
of order I'R. The Lagrange function (l.l! may be representedinthe form 

L = L, + UI (N - b) sit? q1 sin2g~qO'gC' i- ~1 I(b - c) + 

(a - b) sin? qxl sin 2q,q,‘q,’ + . . . 

where the function L, is defined by formula (4.1). The system of equations (2.2), defining 
together with conditions (2.3) the change of variables (2.x), is: 



550 

From this we obtain the explicit form of the change of variables (2.1) 

Yr=Qli 2% Qo[(C----b) + (b-a)sin2QzJsin 2Q, -+- , . . (‘i.IJ 
5 

qr=Qzi~QO(b-a)sinZQ,i_... 

~x=Qa-&Q~(b---)cclrQ,sin2Q1+.. 

Note that because the coordinate $ is cyclic, the variable Q3 is also cyclic in the 
system with the transformed Lagrange function. 

By making the change of variables 17.1) we change to theauxiliary system MS, by 
substituting IQ0 / for Q. and writing the equations of motion of system ,%I* in miltonian 
form. As the variables determining the motion of the solid relative to the centre of mass, 
we take the Andoyer variables, and for determining the motion of the centre of mass we take 
the variables I -W, defined in Sect. 4. We assume the ellipsoid to be symmetric (a = b). 
Expressing the remainder of (C - a) in the form IL (c' - a'), whereO< p((l,and (c'- a') is of 
the order of unity, after some transformations, using the relation of the Andoyer variables to 
the Euler angles and their derivatives /6/, we obtain the Hamiltonian function of system Al* 
in the form 

H = H, T $1, - . . . 

where the function H, is given by formula (6.1), and 

II, (I.,,l, Cf?. II-} = 2m (c' - 0') sin 6, sin 6,122A-'I q0 (I. 17') 1 >: 
(sin 6, sin bl cos 2~, - COB 6, cos 6, ('OS q2) j r,rg (C' - 
n') cos? QI 

Here I, and L are the projections of the angular momentum on the vertical and on the axis of 
symmetry. These are the first integrals and appear in 17.2) as parameters. The variable f, 
is the angular momentum, and cpz its conjugate coordinate /6/. Terms of second and higher 
orders in p, which do not appear in (7.2), axe functions of I,, I,cp,, W, and are 2n periodic 
in (F'~ and W. 

The function ~~(1, IV) contained inH, isdeterminedby (4.4) and (4.6). The function 1 qa’) canbe 
represented by the Fourier series 

When 5, = 0 the motion a system with the Hamiltonian function (7.2) is defined by the 
formulae 

It is assumed that when t = 0, we have vi‘.! = 0. This does not limit the generality, 
since the equations of motion do not explicitly contain time. In (7.5) oz = I,,!A and (ti is 
calculated using formula (4.7) with I = I,. 

Formulae (7.5) describe the uniform rotation of the solid at an angular velocity w.! absut 
the invariant vector of angular momentum. Then the solid periodically collides with the 
plane, at time intervals equal to X0. The maximum jump height h above the plane is 
calculated by formula (4.6) in which we must set I = I,. 

If the ratio a2 w proves to be a rational number, the motion is periodic with some period 
x. when p is non-zero, but fairly small ,the existence of periodicmotions X. canbeestab- 
lished by using Poincare's method(/4/,Sect.42!. 

To do this it is necessary to calculate the mean value (H,) of the function I?, on the 
unperturbed x-periodic motion (7.5). 

(ffl) = ; 5 HI (ILo< I,,< curt. id - i.) di 
0 

The quantity (H,) is a function of IzO. I, and 3.. 
If when I2 = Izfi. f = 1, the Hessian of the function fl, is non-zero, and the relations 

are satisfied for certain i. =: i., , then fcr fairly sm,aii u a periodic motion exists that is 
analytic in !t that transfers into motion :7,5j, when it = 0 in whirl: ?. m: i,. 
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motion are sero, and the two others &GC can be expanded in converging series in increasing 

powers of p'/* 

and 

(7.i) 

Hence follows the condition of orbital stability of the periodic motion in the first 
linear approximation for fairly small II: the right side of Eq.(7.7) must be negative. 

The question of the orbital stability of periodic motion in a non-linear formulation can 
be solved using the following condition* (*See A.A. Saimbattalov. Periodic Poincare solutions 
and their stability in the problem 'of the motion of a solid subjected to the action of gravi- 
tational moments. Candidate Dissertation, MOSCOW. Aviat. Inst, KOSCOW, 1984.) if the condition 
of orbital stability is satisfied in the first (linear) approximation, then for the periodic 
motion to be really orbitally stable it is sufficient that the inequality 

3 a’tff,) a* a,) 
y$p-dE” -5 

( 
-?Z.gLyfO 

I 
(T.8) 

be satisfied for h = h,. 
Calculations based on formulae (7.3-(7.5) show that in this problem, to a first approxi- 

mation in p, periodic motions are found for which the frequency 0% of the unperturbed 
motions (7.5) is a multiple of the frequency 0 : 0% = kto (ii = 1, 3, 3, . . .). In such motions 
(7.5) the solid rotates about the angular momentum vector by the angle kn between two 
consecutive collisions with the plane. 

When o2 = ko , we have 

(HI) = mg (c’ - a’) ( cosz & cos3 6: + $ sin* 61 sin' &) - (i-9) 

+ mg (c’ -a’) sin* & sin? fit X 

i 

cos Zh, ?i- odd 

(cos21, -4ctg61ctg6,cosh), k-even 

It follows from (7.6) and (7.9) that the unknown periodic motions must be such that for 
them, when p = 0, the quantitysin &i,sin &to non-zero, i.e. the unperturbed periodic motion 
must not be rotation about the vertical Line ox about the axis of symmetry. 

We shall briefly present the results of a check of conditions (7.6)-(7.8) in this problem. 
Let k be an odd number. Two types of periodic motions then exist: 
a) h, =0 or x. The corresponding periodic motion is orbitally stable if the following 

inequality is satisfied: 

(c - u)(l - /3) < 0; @ = l'GoTl*R%-21i" (7.10) 

b) iL = =/on or 3' * - .$T . The corresponding periodic motion is orbitally stable if 

(c - a)(1 - B) > 0 (5.11) 

If k is an even number, three types of periodic motions exist: 
al & = 0 and in unperturbed motion ctgS,ctg&# 1. The periodic motion is orbitally 

_:. <.t *.> if ctg 6, ctg&# 4 and the following inequality is satisfied: 

(c - a)(l - ctg S,ctg &)(I - B) < 0 (7.12) 

b) h, = n and in the unperturbed motion ctg6,ctg 6,# -1. The corresponding periodic 
motion is orbitally stable if ctg G,ctgf&# --4 and 

(c - a)($ + etg 6, ctg Q(l - )q < 0 (i.13) 

cf cash, =ctg6,etg6,(/ctg6,ctg6,l<l)~ The periodic motion is orbitally stable, if 

(c - a)(? - 8) > 0 (7.14) 

If inequalities (7.10)-(7.14) are satisfied with opposite signs, the corresponding 
periodic motions are unstable. 
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THE EQUATIONS OF MOTION OF A NON-HOLONOMIC SYSTEM WITH A 
NON-RETAINING CONSTRAINT* 

A.P. IVANOV 

The regularity of the equations of motion of a system with a perfect non- 
retaining constraint qXr, 0 and with differential constraints is demonstrated. 
As regards the latter it is assumed that they are imposed either on all 
motions of the system or only on those for which QI = 0. The effect of 
impacts on the stability of permanent rotation of a heavy solid about its 
axis of symmetry above an absolutely rough surface is investigated. It is 
shown that the stability of rotation of a solid on the surface can be 
destabilized by tearing away to an arbitary height, as small as desired. 

The possibility of deriving the equations of motion in regular form 
which defines the motion of a holonomic system with non-retaining constraint 
in an arbitrary time interval was showing earlier /l/. The advantages of 
this approach in comparison with the traditional method of "fitting" were 
demonstrated in 12-41. 

1‘ s uppose we are given a mechanical system M, defined in the configuration space qs 8" 

by generalized forces Q and the kinetic energy T, which is a quadratic form in q'. The motion 
of the system is restrained by a ncn-retaining constraint q, 1‘ 0 ‘ and by 1,~.< ti differentiable 
constraints of the form 

c~=niq’=cb a,=a,iq.l)ERn (i=i ,(.(, m) (1.1) 

We shall consider two types of differentiable constraints, assuming that only those mot;ons 
for which q, = 0, and for i -= ml __- 1. . . . . 1)~ allmotionsof system M, obey relations (1.1). 

If the coordinate 91 vanishes when t = t* an impact occurs cn the non-retaining 
constraint, as well as the differential constraints of the first type. According to Newton's 
hypothesis that impact (considered absoluteiy elastic) can be definedbythe relations 

q; (t* - 0) = -ql’ (t* - Cr), CJ (t* f 0) = - cj (1* - 0) (12) 
(j =y 1. . I. m,) 

We describe the motion free of impacts by the Boltzmann-Hamel Eqs./5/. If the quasico- 
ordinates x are define d by a reversible substitution 

xZ'=I,q' 3 -T,.-m.j =CJ$ I, (q. I} 5 N” i.3] 
(i=L... .n---m;j=l....,m) 

these equations have in region qI > 0 the iora 

(1.i) 

where the kinetic energy T is set up taking relations (1.3) into account, fi, is the generalized 
force corresponding to the quasicoordinate 1, and the coefficients of non-holonomy y are 
determined from the permutational relations 


