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ON THE MOTION OF A SOLID WITH AN IDEAL NON-RETAINING CONSTRAINT *
A,P. MARKEYEV

The extension of method /1/ of cancnical formalism to systems with ideal
one-way constraints are applied to the analysis of the motion of a solid
when it collides with a stationary horizontal absolutely smooth plane. The
surface of the body is assumed to be close to a sphere. The Kolmogorov
theorem on the conservation of motion when there is a small change in the
Hamiltonian functions /2, 3/ is used for a gualitative investigation of

the motion of the body. The existence of periodic motions of an homogeneous
ellipsoid of revelution is proved by Poincars’'s method /4/ and their
stability is investigated.

1. Let a solid with a convex surface with no points and ribs move in a gravitational
field above a stationary horizontal surface, which in the course of its motion may collide with
the surface. The collision is assumed to be perfectly elastic, and the plane absclutely smooth.

We will relate the motion to a fixed coordinate system Ouzyz having its origin at some
point of the surface; the 0z axis is directed vertically upward. The system of coordinates
GEyl  is rigidly attached to the solid aleng its principal central axes of inertia. The
Euler angles 1, 6, ¢ determine the position of the solid relative to the system of coordinates
that are conventionally introduced, and the unit vector y of the Oz axis in the system Gin{
is specified by the components vy, Yo Vu

y1==sinfsing, vy, =sinBcosg, 7y;=cosb

Let P be a point of the surface of the solid closest to the horizontal plane Ory »
whose coordinates &, w, { in the system Gin{ are functions of the angles 6, ¢ defined by the
form of the eguations f{§, %, &) = 0 that defines the form of surface of the solid.

If z, y, z are the coordinates of the centre of mass 6 of the solid in the system Ouxys,
m is the mass of the body, ¢ is the acceleration due to gravity, 4, B, C are the principal
central moments of inertia of the solid, p,¢. 7 are the projections of its angular velocity
on the axes GE& G, G:, the kinetic and potential energy of the solid are given by the
equations

T Mam (2% o " R 2% 2V, (4p? 4 Bt - €, T = mez
poe=gyy B8 cosq, ="y, — 8 sing, ro=ycosf g

The non-retaining constraint imposed on the solid is given by the ineguality :z > J, where
d = —{&y; = Wy, + {ys) is the distance of the centre of mass from the horizontal plane that
%asses through the point P. This inequality indicates that the point P is not below the plane

Y.

Since the two external forces acting on the solid, the gravity force and the force
generated on impact, are vertical, the projection of the centre of mass on the Ousy plane
poves uniformly and rectilinearly; without loss of generality we will assume that it is
stationary (" = 5 = 0), so that the centre of mass moves along the given vertical line.

If the coordinate z is replaced by the quantity gor using the formula g, = z 4 &y, -~
MYy = oV and we put i

sy =Esin ¢ -ncosq, ¥ = Ecos ¢ — nsing

and take into account that the functions (6. ¢). v (8. ¢). {{B, ¢) satisfy the easily verified
identities

o+ + Sve=0
where the prime denotes differentiation with respect to § or ¢, the Lagrange function can
be expressed in the form
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@go = M, Qoy = @39 = —m (%1€08 ¢; — Lsin g;), agy = a0 = —my, sin ¢
Gg3 = a3 = U, a;; = Acos? g, + Bsin® g, + m (ycos g —
{ sin g;)?
Q1p = @y = MYy (%108 g, — Lsin g} sin g,, a3 = a5 =
(A — B)sin g, sin g, cos q,, @y = C -+ my,? sin? ¢,
Gy3 = Az, = C cos qy, ay; = (4 sin® g, + B cos? ¢,) sin® ¢; +
C cos? g,
Q=6 =9 g=y
The constraint is given by the inequality ¢, > 0.

2. To write the equation of motion in Hamiltonian form it is first necessary to make the
non-degenerate change of variables

9 = Co- 9, =1;(Qy, @1, @, Q) (j=1.2,3) (2.1}

selecting the functions f; so that in the new variables the Lagrange function does not contain
products Q,Q; (j =1, 2, 3). The functions }; . according to /1/ must satisfy the system of
differential eguations

d d d . .
a ot + Ay @ = —ay ((=1,2.3) 2.2)

Here the quantities g¢;,¢. and g¢; in the coefficients g;; must be replaced by the unknown
functions f,,f, and f, respectively. The quantity @, in (2.2) plays the part of an indeépendent
variable., System (2.2) must be solved for the initial conditions

filemo = Q; (j=1,2,3) (2.3)
The new variables (; appear in functions /. [,, /, as parameters. We will denote the dynamic
system, with Lagrangian function expressed in the new variables @, Q; (j =1, 2. 3), by M.
Replacing @, by|Q,|in the Lagrangian function, we change to theancilliary system A/*
with the Lagrangian function L*, The trajectories Q, (i), Q; () and Q,* (1). Q;* (1) of systems M
and M?* satisfy the relations

Qo () = 1Q* () |, Q;(1) =Q* (1) (1 =1, 2,3)

The ancilliary-system equations may be written inthe usual way in the Hamiltonian form

0,  oH ap, aH .
= =%, @ — g (=0123
where we must assume
GH . GH | )
= min{ (0. =
Q¢ Qs 0 < 9Qu ]Q‘:-o)

3. The explicit form of the change of variables (2.1) cannot generally be obtained, but
if the coefficientsa,; (j = 1, 2, 3) are small, the sclution of the Cauchy problem (2.2), (2.3} can
be found in the form of series in the small parameter. In this problem the coefficients a,
is equal to zero, and the coefficients a4 and a 4, are small if and only if the surface of
the solid is close to a sphere whose centre is at the centre of mass of the sclid.

To prove this we assume that the equationf(, 7, ) = 0of the surface of the solid is such
that y§ = grad//|grad /]| Then

af af af
'a—',i-:}’xlgrad 1 d_n:'.‘zlgrad”, = Vsl grad f|

and for the quantities gy, g, we Obtain theequations

m AN A A A
o = Smqrgmrre L) (&) - e d)
m ( ar 6/\
2= Tgrad7] \"L ")

The equation g, = 0 implies that the solid surface must be a surface of revolution f (p,

t) =0, where p= (i + n?'* Substituting the function f into the equation a, =0, we obtain
af (, 6f a"/) .
= _p=—1=0 3.1
0 (g ap P IC 3.0

The quantity gf/¢gp cannot be identically zerc, since the equation f= ¢ would then be
simply an equation in {. Hence from (3.1) it follows that the expression in brackets equals
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zero, i.e. f is a function of p?+ 3. This means that the coefficients ay and a, are
identically zero only if the surface of the solid is a sphere whose centre is at the centre

of mass G of the solid. - '
In what follows we will assume the surface of the solid to be close to a sphere of radius

R specifedby the equation
feR-E+Y+ O+ En =0 0lp)
Function f, is assumed to be an analytic function of its variables. The coefficients
Qo and g, are quantities of the order of .

4. The solid is a sphere, when yu = 0. The centre of mass of the sphere coincides with
its geometric centre; the sphere is generally homogeneous, and has an arbitrary central
ellipsoid of inertia. The Lagrangian function L, is the sum of two terms

Lo = L0 o+ L@ {4.1)
where LoV is the Lagrange function defining the Euler-Poinsot motion of a solid about its
centre o‘f& mass; it is obtained from the function (1.1), if in the latter we assume m =0,
g0 = 0. The function L¢® defines the motion of the centre of mass of the sphere (g, =
z— R)

Lo® = Yomqy™® — mgg,, g =0 (4.2)
The subsidiary system A * with the Lagrange function Lg* has the Hamiltonian function
H, = H® + Hy®, where Hy» is the Hamiltonian of the Euler-Poinsot problem, and

Ho® = ped(2m) + mg | g | @3)

The Euler~Poinsot motion is well known. We shall consider in detail the motion of the
centre of mass in the system M *which is defined by the Hamiltonian (4.3).

gy ":F
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Fig.l Fig. 2

Curves of the potential energy II,* of the subsidiary system AM* and its trajectory in
the phase plane g, p, are shown in Fig. 1. Each phase trajectory consists of parabolic arcs
symmetrical about the axis g, =0. In the system M* all motions are periodic of period «
equal to 4 (2h/g)'s, where h is the maximum height the sphere jumps above the plane. The guantity
T is equal to the time interval between the k-th and the (k + 2)-th collisions of the sphere
with the plane.

The dependence of g, on time is shown in Fig. 2 for the M,* system on the assumption that
I is zero at t={0. The curve of the function g,{f) consists of pieces of parabolas

{ ghyt — g2, OCegr2
Q'@{l‘)ﬁ . (0 : 138y

U—ehyst —u2) £ gt~ 12122, 12t <t

The actual motion of the centre of mass, described by the Lagrangian function (4.2}, has
& period of 12 egual to the time interval between two consecutive collisions of the sphere
with the plane. The curve g¢,(!) of the actual motion is obtained from the curve represented
in Fig. 2 by a mirror reflection of its part lying below the time axis, relative to that axis.
The phase pattern of the actual motion is obtained from the phase pattern in Fig. 1, by taking
in the latter only the parts of the trajectory on which ¢, > 0, and supplementing them to
closed curves by corresponding segments of the go = 0 axis. For instance, to obtain from
the phase trajectory abed of the subsidiary system the phase trajectory of the actual system
it is necessary to complement the arc gbe by the segment ca. The transfer from point c
to point a occurs jumpwise, which corresponds to the collision of the sphere with the plane.

To continue the analysis it is necessary to reduce function (4.3) to action variables

- the angle W. For this we make the following 2m  periodic in W cancnical replacement of
the variables ¢, p,— 1, W
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Gha W (n — W), 0{W

q={ — &t (W — ) 20— W), a{W <2 (34
2mat (2gh)e(n/2 — W), 0LW <{m

p= { — 2matt (2gh): (37,2 — W), a<LW<{2xa

The Hamiltonian (4.3) in variables I, W takes the form

Hy® = (% g,mnlg?) I (4.5)
The height of the jump is related to the quantity I by the equation

1 = 4 ma (2g)"hs (4.0)

The frequency « of the periodic motion of the centre of mass in the subsidiary system
M *  is calculated using the formula

SH (2 2 Qe V) 9 g\t
. 02 mmi N, -.’1___1_(__;_ 2 -
WESrT =T ) T T2 S (47)
Hence, for u = (0 the motion of the subsidiary system is the motion of the Euler-Poinsot
solid relative to the centre of the mass and the periodic motion of the latter with frequency
o given by formula (4.7). The actual motion differs from that meotion only in the fact that
in it g0 >» 0, and the periodic motion of the centre of mass occurs along the vertical line

with a frequency 2w,

5. Now suppose wz (. We genote by /. 7/, I, W,. W,. W, the action-angle variables
in the Euler-Poinsot problem /5, 6/. Here I, is the projection of the angular momentum of
the solid relative to the centre of mass on the vertical line, and J, is the modulus of the
angular momentum. The angle variable W, is cyclic in this prcoblem, hence [/, is the first
integral which we shall consider as one of parameters. The Hamiltonian can be written in
the form

H=H, (. T. D)+ pH, (I Ty LW W W)+ 5.1
Hy = HoV (1. 1) — Hy? (1)

where Hy? is the Hamiltonian of the Euler-Poinsot motion expressed in terms of the action-angle
variables, and the function Hy® (/) is defined by formula (4.5). The function H — H, is
analytic for all variables and 2a periodic in W,, W, ané W,. The dots, here and sub-
sequently denote terms cf second and higher orders.

Let the motion of the solid relative to the centre cf mass be conditionally periedic.
Its frequencies w, are equal to the derivatives #Hq 'V 'df; (k =1, 2), computed for initial
values of the quantities I, 1,.

For the Hessian T of the function H,; we have the expression

53]{(1) d-’H‘”
— e 0 O
ol ahols
r— 62H((71) dzH(()l) 0 _< dun OGwg - fwy 5(92) do
T | aldl, alg? —\ 9, dl, al, ¢l al
62H(2\,
0 ]
() 0 E E
The first factor in the above formula for I is non-zero, as shown in /7/. Since (4.7}
implies that
do 4ot
e 59
ol matég? #0 5.2)
we have TI's£0. Hence from the Kolmogorov's theorem /2, 3/ it follows that for any & >0
there exists a yu, such that Jor 0 < p<u, for all f, — oo <(t< o0 motion in the system with
Hamiltonian (5.1) conforms to the inequalities |Jx () — 7 (0) | <<e(k=1,2),17T@) —1(0)|<e
for the majority of initial values /i (0),/ (0)in the sense of Lebesgue measure.

This conclusion means that (for the majority of initial conditions) in an infinite time
interval, the motion of the solid of a form fairly close to a sphere is such that its angular
momentum and the angle between the angular momentum vector and the vertical differ only little
from their initial values; the jump height h above the plane differs little from its value
in the unperturbed motion (4==0), and, consequently, the time intervals between two cons-—
ecutive collisions between solid and plane vary only slightly.

6. Let the solid be dynamically and geometrically symmetrical with axis of symmetry G
The angle of eigenrotation ¢ is a cyclic coordinate. The projection L = Cr of the vector
of angular momentum on the G axis is the first integral. Having fixed L we relate it tc
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the parameters of the problem. Investigation of the motionof a solid reduces to a consideration
of a system with two degrees of freedom whose Hamiltonian in action-angle variables has
the form

H=H,+pK (I, I, W,, W)+ ... {6.1)
2 22 \1),
Ho= 55 + (2252 )" s
where H — H, is an analytic function of its variables, 2n periodic in W, and w.

The motion of the solid relative to its centre of mass becomes a regular precession when
u = 0. In special cases the precession degenerates into a steady rotation of the solid
about its principal central axes of inertia.

The conclusions in Sect. 5 on the conservation of motion for small p are valid in this
case. But, since in this case, the problem reduces to an investigation of systems with two
degrees of freedom, not as in Sect. 5 with three degrees, it is possiblehere todraw conclusions
on the conservation of motions for all initial conditions, and not for the majority of
cases as in the latter. To check this it is sufficient to verify condition D=0 /3/ of
the iscenergetic non-degeneration function H, in (6.1). We have

a*H, &H, oH,
aly2  alyof a1y

D H, 8H, 6Hy |_ @t I\ do
==\ e, et G 1T T (T) i
aHﬂ dHn -
aly al ¢

Taking into accoung relations (4.6), (4.7), and (5.2), we obtain

o I
D—T( 2mulid “1)
The quantity DI vanishes if and only if mgh = I,*24. Hence D =0 . Because of this the
conclusions about the motions of a solid are valid here for all initial conditions.

7. Let us consider the question of the existence and stability of periodic motions of
4« solid that is nearly a sphere, To be specific we shall consider the solid to be a homogeneous
ellipsoid, whose surface equation has the form 1 — (E%a® + 0%b® <+ 2¢%) = 0. The coordinates

.M L of point P are related to the Euler angles 6, ¢ Dby the relations

b*?t = —Asin8sinq, cfa’ny = —Asin8cosq, ol =
—Acos 8
A e (bic-i'é? + Ciainﬁ _‘_ a;bi;‘?)’";

The following equations hold:

A . T
K1 == — o sin 0 (a®sin® ¢ + b%cos? )
. Af@*—b%) .o .
)(g:—WsmBsm(pmscp
71€088 — Lsin @ = 2 s 2sin? ¢ + b*cog? 2
71€088 — Csin bl = — —5 sin  cos B (a? sin® ¢ + B cos? ¢ — ¢?)
yysin @ - ¢ 0 = A 2 il ] 2 e 2 2
718100 - 08 0 == — —r [(a® sin® @ + b2 cos® ¢) sin? O - ¢? cos? 6]

Ad=mB + )5 B=m{+a)5 €C=m+ )5

Suppose the semi-axesof the ellipsoid are close to R, differing from it by quantities
of order pfl. The Lagrange function (1.1) may be represented in the form

L= Lo+ m(a— bysin® gy sin2qyq.q + m (b — ¢) +
(@ = b) sin® g} sin 2qy00'q," + . . .

where the functicen L, is defined by formula (4.1). The system of equations (2.2}, defining
together with conditions (2.3) the change of variables (2.1), is:

iy 5

—d@-mm[(c—b}-(bwﬁ)sinzjﬂsi112ﬁ+.‘.
df. df. 3 c .
';’5;*r'Cusfx-gb%=E?—‘,;(b———a)sm-hsm2h+...
dfa dfs

—d—@'—'}‘COSf m—...
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From this we obtain the explicit form of the change of variables (2.1)

91=01 + 577 Qol(c —b) + (b—a)sin® Q] sin 20 + . . . (7.1

g2 =0 + %Qo(&—~a,}sin202—f~ -

93203«—5—% Qo(b—ajcoe Qysin20Q, + ...
ity = @y

Note that because the coordinate ¢ is cyclic, the variable @; is also cyclic in the
system with the transformed Lagrange function.

By making the change of variables (7.1) we change to the auxiliary system M*, by
substituting [ @, | for @, and writing the eguations of motion of system M* in Hamiltonian
form. As the variables determining the motion of the sclid relative to the centre of mass,
we take the Andoyer variables, and for determining the motion of the centre of mass we take
the variables I -W, defined in Sect. 4. We assume the ellipsoid to be symmetric ({(a = b).
Expressing the remainder of (¢ — a) in the form p (¢’ —a'), where0<p<<€1t,and (¢’— a’) is of
the order of unity, after some transformations, using the relation of the Andoyer variables to
the Euler angles and their derivatives /6/, we cobtain the Hamiltonian function of system M*
in the form

H==H,+ul + ... (7.2
where the function H, is given by formula (6.1), and
Hy (T 4, o W) =2m (" — a’) sin &, sin 8,7,2°42| q, (1, W} | % (7.3
{sin &, sin 6, cos 2q, — cos &, cos &, cos ¢,) + mg (¢ —
a’) cos® Q,
cos Q) = cos §, cos &, — sin &;sin §, cos ¢, cos &, = I;'1,,
cos &, = L[,

Here /; and L are the projections of the angular momentum on the vertical and on the axis of
symmetry. These are the first integrals and appear in {7.2) as parameters. The variable [,
is the angular momentum, and ¢, its conjugate coordinate /6/. Terms of second and higher
orders in pu, which do not appear in (7.2), are functions of I, I, ¢,, W, and are 2n periodic
in ¢, and W.

The function g, (I, W) contained in H, is determined by (4.4) and (4.6). The function | g4 | can be
represented by the Fourier series

gl W) = ;;2 L ~2ZM) (i.4)

o né

n==}
When p = U the motion a system with the Hamiltonian function (7.2) is defined by the
formulae

-1
iz |
Ry

ly= Iy, = const, [ == I, = const (7.

Qg = wety W = wt -+ 7 {# = const)

It is assumed that when (=, we have ¢, = 0. This does not limit the generality,
since the equations of motion do not explicitly contain time. In (7.5} @, = {3/4 and « is
calculated using formula (4.7} with [ =/,

Formulae (7.5) describe the uniform rotation of the solid at an angular velocity o, about
the invariant vector of angular momentum. Then the solid periodically collides with the
plane, at time intervals equal to o w. The maximum jump height h above the plane is
calculated by formula {4.6) in which we must set 7 =/,

If the ratio @, w proves to be a rational number, the motion is periodic with some period
% . When u is non-zero, but fairly small, the existence of pericdic motions » can be estab-
lished by using Poincare's method{/4/, Sect.42).

To do this it is necessary to calculate the mean value (H,> of the function #; on the
unperturbed x~periodic motion {(7.5).

»
(Hy = — S Hyoos Toe ot ot = 1) dt
[
The quantity {(H;> is a function of [, [, and X.
If when [, ==7I,,.7 =1, the Hessian of the function H, is non-zerc, and the relations

8 (Hy» -y FoHys 0 =
e = LRy ————— x .40
£ ¢ 7 (b
are satisfied for certain & = 4,, then for fairly small p a periodic motion exists that is
analytic in u that transfers intc motion [7.5), when u = 0 ir which 7 == 7.

ACooveine o SL. Secn.Tloone wws corrssy snoing characterastic andioocth
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motion are zero, and the two others --a can be expanded in converging series in increasing
powers of p'

a = ogp' + agpt -+ g’ + ..

and
o g 82¢Hp 2 ®Ho o BH |, 8, .
Wy 0y ® == prE] 1=2.'(\)2 81z 2")29 101 +@ ”—6122 (?.l)

Hence follows the condition of orbital stability of the periodic motion in the first
linear approximation for fairly small p: the right side of Eq.(7.7) must be negative.

The question of the orbital stability of periodic motion in a non-linear formulation can
be solved using the following condition* (*See A.A. Saimbattalov. Periodic Poincare solutions
and their stability in the problem of the motion of a solid subijected to the action of gravi-
tational moments. Candidate Dissertation, Moscow, Aviat. Inst, Moscow, 1984,) if the condition
of orbital stability is satisfied in the first (linear) approximation, then for the periodic
motion to be really orbitally stable it is sufficient that the inequality

o GV(Hyy 83 <Hy 3 CHy 2 -
3= e “5< 5 )*O (7.8)

be satisfied for A =A,.

Calculations based on formulae (7.3-(7.5) show that in this problem, to a first approxi-
mation in p, periodic motions are found for which the frequency w, of the unperturbed
motions (7.5) is a multiple of the frequency w:w,=rho (k=123 ...) In such motions
{7.5) the solid rotates about the angular momentum vector by the angle kn between two
consecutive collisions with the plane.

When w, = ko , we have

{Hiy=mg(c —a’) (0052 8 cos? 8, + % sin? 8 sin? §,) — (1.9

—;— mg (¢’ —a’)sin? §; sin? 8, X
{ €os 2h, k— odd
{cos 2h — 4etg Syctg Syco8R), k— even

It follows from (7.6) and (7.9) that the unknown periodic motions must be such that for
them, when p = 0, the quantity sin §, sin §,to non-zerc, i.e. the unperturbed periodic motion
must not be rotation about the vertical iine or about the axis of symmetry.

We shall briefly present the results of a check of conditions (7.6)-(7.8) in this problem.

Let k be an odd number. Two types of periodic motions then exist:

a} X, =0 or =m. The corresponding periodic motion is orbitally stable if the following
inequality is satisfied:

(e — a1 —B) < 0; P = 1'40a2R2%2? (7.10)
b) Ay = or 3¥,m. The corresponding periodic moticn is orbitally stable if
fe—at —-$>0 (7.11)
If k is an even number, three types of periodic motions exist:
a} A, = 0 and in unperturbed motion ctg§,cigd, s 1. The pericdic motion is orbitally
<tekie if ctg 8, ctg 8,5 4 and the following inequality is satisfied:
(¢ — a)(1 — ctg Syetg 8,)(1 — P) << 0O (7.12)

b) Ay == and in the unperturbed motion ctg §,ctg§, %= —1. The corresponding periodic
motion is orbitally stable if ctg §,cig 8, % —4 and

{c —a){t +ectgd ctg )1 — B <O (7.13)
€} cos A, == cig § ctg 8, {|ctgd ctg 8,1 < 1). The periodic motion is orbitally stable, if
(c —a)(t — Py >0 (7.14)

If inequalities (7.10)-(7.14) are satisfied with opposite signs, the corresponding
periodic motions are unstable.
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THE EQUATIONS OF MOTION OF A NON-HOLONOMIC SYSTEM WITH A
NON-RETAINING CONSTRAINT *

A.P. IVANOV

The regularity of the equations of motion of a system with a perfect non-
retaining constraint ¢, >0 and with differential constraints is demonstrated.
As regards the latter it is assumed that they are imposed either on all
motions of the system or only on those for which g =0, The effect of
impacts on the stability of permanent rotation of a heavy solid about its
axis of symmetry above an absolutely rough surface is investigated, It is
shown that the stability of rotation of a sclid on the surface can be
destabilized by tearing away to an arbitary height, as small as desired.

The possibility of deriving the equations of motion in regular form
which defines the meotion of a holonomic system with non-retaining constraint
in an arbitrary time interval was showing earlier /1/. The advantages of
this approach in comparison with the traditional method of "fitting" were
demonstrated in /2-4/.

1. suppose we are given a mechanical system M, defined in the configuration space g = R"
by generalized forces @ and the kinetic energy T, which is a quadratic form in q. The motion
of the system is restrained by a nen-retaining constraint ¢, >0, and by m < n differentiable

constraints of the form
ci=a,q =0, ¢;=a(q. )= R" (i=1,,..,m) .1

We shall consider two types of differentiable constraints, assuming that only those motions
for which ¢, = 0, and for { = m, =~ ... .. m allmotions of system M, obey relations (1.1).

If the coordinate g, vanishes when { = {* an impact occurs on the non-retaining
constraint, as well as the differential constraints of the first type. According to Newton's
hypothesis that impact (considered absolutely elastic) can be definedby the relations

g (F == 0) = —q (* =), 6 (t* +0) = —c; (1* —0) (1.2
G=1. ..., ny

We describe the motion free of impacts by the Boltzmann~Hamel Egs./5/. If the quasico-
ordinates a are defined by a reversible substitution

1, =1q) Tm == L{g = /Y 1.3
(i=1 ... n—mj=1...,m)
these equations have in region g, > 0 the form
d of ol ér . . .
T =T, A =0 1.4
dt da o1, = 'Svoaa L I, 4 (1.4)

'

fe=1. ..., n—m=+my; r=n—m-=m =1, ... n)

where the kinetic energy T is set up taking relations (1.3} into account, [I; is the generalized
force corresponding to the gquasicoordinate n, and the coefficients of non-holonomy y are
determined from the permutational relations
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